Blog Archives

Eureka! Sapphire Clock Finalist in the Eureka Prize

SC

The Sapphire Clock team, led by Professor Andre Luiten, is one of two finalists in the “Outstanding Science in Safeguarding Australia” category the Australian Museum Eureka Prize.

Over the last 20 years, the Sapphire Clock team, including Professor Andre Luiten, A/Professor John Hartnett and A/Professor Martin O’Connor has developed a high-precision technology that generates signals of the ultimate purity. The Sapphire Clock is a cryogenic sapphire oscillator that allows time to be measured to the femtosecond scale (one quadrillionth of a second), with only a single second gained or lost every 40 million years. This kind of accuracy is required for ultra-high precision measurements.

Their work was motivated out of a belief that precision measurement is the path to discovering new knowledge – a foundation belief of all science – however, this capability also delivers a competitive advantage to industry by allowing one to measure what was previously thought to be immeasurable.

Recently, the Sapphire Clock team initiated a collaboration the Jindalee Over-The-Horizon Radar Network (JORN) with the Sapphire Clock having applications to improve radar technology. JORN is a linchpin of Australia’s security, providing long-range, broad-scale and continuous surveillance. The sapphire clock technology offers a step-change in the performance of this radar, which has been likened to getting 30 years of development in just one day. This combination of leading technologies opens a path to improved security for all Australians

“By combining two decades of pioneering research with cutting-edge engineering, the Sapphire Clock Team’s technology offers the potential for a step change in the performance of the Jindalee Over-The-Horizon Radar Network, a vital Australian defence asset. The Sapphire Clock offers a thousandfold improvement in timing precision, helping Australian defence agencies identify threats to the nation”

 

Additional links:

Finalists video

Australian Museum media release

 

Advertisements

Sapphire Clock’s JORNey

Andre LuitenMartin O’ConnorFred Baynes and Waddah Al-Ashwal, members of the Sapphire Clock team, recently visited the Jindalee Operational Radar Network (JORN) near Laverton, WA. The JORN site is part of the Australian Airforce’s monitoring and surveillance, covering between 1000-3000km of local and international airspace.  

The Sapphire Clock is a cryogenic sapphire oscillator that allows time to be measured to the femtosecond scale (one quadrillionth of a second), with only a single second gained or lost every 40 million years. This kind of accuracy is required for ultra high precision measurements; such as radar technology used at JORN.
SC

“Cool” Front Cover Feature for the Sapphire Clock

Cryo clock

The Sapphire Clock is featured on the front cover of this month’s “Cold Facts”, the official publication of the Cryogenic Society of America

The Sapphire Clock is a cryogenic sapphire oscillator that allows time to be measured to the femtosecond scale (one quadrillionth of a second), the kind of accuracy required for ultra high precision measurements; such as radar technology, long baseline astronomy and quantum computing.

Building off technology developed by Prof Andre Luiten in 1996 and Prof John Hartnett in 2004-2012, the most recent version of the Sapphire Clock is capable of 100 time better spectral purity than other sapphire clock articlecommercially available technologies.

The Sapphire Clock team is led by A/Prof Martin O’Connor and a commercial version will be available in late 2017.

Ref: O’Connor et al (2017) Cold Facts, Vol 33 (1): 16-17.

ON Prime: For Big Ideas Ready to Break out – three successful IPAS applications

Congratulations to IPAS researchers for gaining a spot in CSIRO ON Prime. This pre-accelerator program helps research teams validate their research and discover a real world application for it.

ON embraces a get-out-of–the-building approach to learning, by encouraging hands-on, practical learning and business model development.

The High Temperature Sensor, Sapphire Clock and Making better babies with light teams were successful in their applications and the research teams will head to Melbourne over the coming months to participate in the program.

We also wish to congratulate the Robinson Institute for their successful application Home Fertility Assessment.

 

ON Logo CSIRO Logo