Blog Archives

IONS KOALA 2016 Student Conference 27 November – 2 December

The 9th Conference on Optics, Atoms and Laser Applications (KOALA) and International OSA Network of Students (IONS) event will be co-hosted by students from Monash and Swinburne Universities in Melbourne from Sunday 27th November to Friday 2nd December 2016.

IONS KOALA is Australia and New Zealand’s only student conference in the fields of optics, quantum optics, atom optics, photonics and laser technology.

For registrations and details, see their website, or email info@koala2016.com. Registrations close 14th October.

Koala Student Conference 2016

Advertisements

ON Prime: For Big Ideas Ready to Break out – three successful IPAS applications

Congratulations to IPAS researchers for gaining a spot in CSIRO ON Prime. This pre-accelerator program helps research teams validate their research and discover a real world application for it.

ON embraces a get-out-of–the-building approach to learning, by encouraging hands-on, practical learning and business model development.

The High Temperature Sensor, Sapphire Clock and Making better babies with light teams were successful in their applications and the research teams will head to Melbourne over the coming months to participate in the program.

We also wish to congratulate the Robinson Institute for their successful application Home Fertility Assessment.

 

ON Logo CSIRO Logo

Optic-fibre sensors enabling aircraft, ships to self-diagnose corrosion

Deputy Director

Prof Heike Ebendorff-Heidepriem

The days of Australia’s defence forces routinely deconstructing major equipment to visually inspect for corrosion could soon be over, saving huge amounts of time and money, and possibly even lives.

In a world first, researchers at the Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide have developed a unique form of optic fibre that can be coated with flurometric corrosion-sensing material—another world-first technique—and embedded throughout the critical structures of aircraft and ships.

Co-lead researcher and IPAS Deputy Director Professor Heike Ebendorff-Heidepriem says this means a fighter jet’s wings, for example, could be checked for the early signs of corrosion in a matter of seconds, with no deconstruction required, then be immediately returned to action.

“We’d been working on training light along tiny ‘nano-rail’ fibres threaded through liquids, structures or other mediums as detectors for several years,” says Heike.

“The light in the nano-rails isn’t contained, as it is in standard broadband-Internet optical fibres, but rather is guided along an exposed core, and can interact with surrounding materials to reveal their secrets.

“The Defence Science and Technology Group (DSTG) asked us to work collaboratively wit them to develop these fibres to detect corrosion in the harsh environments which Defence’s aircraft and ships are exposed to.”
According to Heike, the breakthrough came when co-lead researcher Roman Kostecki developed the world’s first exposed-core optic fibre made from silica.

“This made it sturdy enough for use outside the lab, and allowed us to start applying the technology to real-world problems.”

The team subsequently developed a unique method of coating the fibres with chemicals that respond when light comes into contact with any nearby corrosion by-products, enabling near-instant checks to be conducted by firing lasers along the fibres.

“We’ve already successfully checked for aluminium ions in aircraft-grade materials—the first time that’s ever been done with optical fibres—so we’re very excited to keep expanding the technique’s applications in conjunction with the DSTG.

“It has fantastic potential to create safer aircraft, ships, and even critical structures like bridges, which could ultimately contribute to saving lives.”

The technology has also led to new health-related research, says Heike, including in-vitro-fertilisation (IVF) and water-safety applications.

Article from Research Impact, The University of Adelaide

Photographer: CPL Glen McCarthy

Photographer: CPL Glen McCarthy

Finalist for the 2016 South Australian Science Excellence Award – Excellence in Research Collaboration UoA and Trajan

Photo: Tom Roschi

Photo: Tom Roschi

IPAS along with Trajan have been named finalist for Excellence in Research Collaboration award by the Government of South Australia.

From the Government of South Australia, Department of State Development:
The Science Excellence Awards is South Australia’s premier event to recognise and reward outstanding scientific endeavour, including its application in industry and the advancement of science and mathematics education.

Finalist for the 2016 South Australian Science Excellence Award – Excellence in Research Collaboration:

Trajan – University of Adelaide partnership
In November 2015, the University of Adelaide (UoA) commenced a major strategic partnership with Trajan Scientific and Medical (Trajan), with the support of the South Australian government, and launched the new Trajan R&D and Manufacturing Hub in Adelaide at the University. This collaboration is enabling the realisation of research, development and commercialisation of new generation specialty glass products for the global science and medical equipment market.

The winner will be announced at the SA Science Excellence Awards Ceremony on Friday 12 August 2016.

Photo: Tom Roschi

Photo: Tom Roschi

Photo: Tom Roschi

Photo: Tom Roschi

Photo: Tom Roschi

Photo: Tom Roschi

Photo: Tom Roschi

Photo: Tom Roschi

Additional funding for vital research

OLYMPUS DIGITAL CAMERA

The Turnbull Government has announced an additional $16 million for 10 critical research projects that will generate meaningful social and economic benefits for all Australians in areas including urban infrastructure, bioscience, telecommunications and health.

Minister for Education and Training Simon Birmingham said the investment from the National Collaborative Research Infrastructure Strategy (NCRIS) Agility Fund would help unlock Australia’s potential as an innovation nation by “backing work that offers real and tangible benefits for Australians from all walks of life”.

“Homes, hospitals, farms and fishing trawlers are just some of the places set to see benefits from the research these new facilities will deliver,” Minister Birmingham said.

“From areas as diverse as microscopy and marine science to ion acceleration and veterinary science, the Coalition’s $16 million additional investment in 10 research projects highlights our commitment to ensuring Australia has the support it needs for research and innovation.

“Our commitments stand in stark contrast to Labor which in government announced $6.6 billion worth of cuts from higher education and research and left major research infrastructure without funding, like NCRIS, which jeopardised the jobs of 1,700 highly skilled critical researchers.”

The additional $16 million funding comes on top of the $150 million of indexed investment for ongoing operations that we committed through the National Innovation and Science Agenda.

Minister Birmingham said that the Coalition had taken an holistic approach to research by encouraging collaboration with industry and business to focus on being more responsive to the needs and priorities of our society and economy.

“Australia needs a coordinated and focused approach to research priorities that are targeted at those things that make a difference to Australia and generate meaningful social and economic benefits,” Minister Birmingham said.

“That’s why our National Innovation and Science Agenda outlined sharper incentives in research funding that reward research excellence and partnership with industry.

“In May we committed $163 million to 258 new research projects that have been selected based on how they map to the challenges Australia faces.”

Minister Birmingham was joined at the announcement by the country’s Chief Scientist Dr Alan Finkel AO who was in Adelaide as part of a nationwide consultation trip to develop the priorities for Australian research.

“The work Dr Finkel and his Expert Working Group of researchers, stakeholders and business leaders are doing is critically important to develop a new roadmap for NCRIS and direction for research and innovation for the next decade,” Minister Birmingham said.

“The Expert Working Group has already made great progress and their work will ensure Australia has clear research priorities so that our universities and institutions can work together to tackle the challenges we face across the country.”

Article from Senator Hon Simon Birmingham, Liberal Senator for South Australia and Minister for Education and Training

IMG_6375  IMG_6356  IMG_6360  IMG_6378   OLYMPUS DIGITAL CAMERA

IPAS featured on the Defence SA Research and Development Strengths site

Ms Tess Reynolds and the Advanced Materials collaboration between IPAS and the defence industry has been featured as part of the Defence SA Research and Development Strengths website.

“South Australian researchers have a strong culture of cross-university, industry and Defence Science and Technology (DST) Group collaborations in Australia and internationally.

DST Group’s longstanding and significant presence in South Australia has fostered the development in our institutions of specialist defence research concentrations.” See the full article here

Ms Tess Reynolds

Ms Tess Reynolds

Dr Mandy Leung awarded prestigious Postdoctoral Fellowship by the Japanese Society for the Promotion of Science (JSPS)

Dr Mandy Leung has been awarded a prestigious Postdoctoral Fellowship by the Japanese Society for the Promotion of Science (JSPS) to study micro- and nano-fluidics at the Okinawa Institute of Science and Technology. Mandy completed her PhD in Chemistry under the supervision of A/Prof Tak Kee in 2015. Congratulations to Mandy and we wish her all the very best in her upcoming fellowship.

Dr Mandy Leung

Dr Mandy Leung

 

Dr Stephen Warren-Smith wins prestigious Ramsay Fellowship

Congratulations to Dr Stephen Warren-Smith who has won a prestigious Ramsay Fellowship. These fellowships are to support outstanding researchers to conduct full time independent research within the Faculty of Sciences at the University of Adelaide.

Stephen completed his PhD in 2011 at The University of Adelaide. Following this, Stephen was a recipient of an ARC Super Science Fellowship to work on fertility biomarker sensing. In 2015 Stephen became a Marie Curie International Fellow at the Leibniz Institute of Photonic Technology (IPHT) in Jena, Germany, to investigate new designs of optical fibre biosensors.  We welcome Stephen back to IPAS in October 2016.

Dr Stephen-Warren Smith

Dr Stephen-Warren Smith

Research by Dr Phil Light to improve precision measurement of time and frequency

Bidirectional microwave and optical signal dissemination

We have developed a technique to combine and distribute highly stable microwave and optical signals from physically separate frequency standards to multiple locations. This capability can be used to improve precision measurement of time and frequency.

Authors; Light, P., Hilton, A.P., White, R.T., Perrella, C., Anstie, J.D., Hartnett, J.G., Santarelli, G., Luiten, A.N.

Optics Letters 41 (5), pp. 1014-1017 (2016).

Full abstract and paper available here

Phil pigeons

Glass now has smart potential

Australian researchers at the University of Adelaide have developed a method for embedding light-emitting nanoparticles into glass without losing any of their unique properties – a major step towards ‘smart glass’ applications such as 3D display screens or remote radiation sensors.

This new “hybrid glass” successfully combines the properties of these special luminescent (or light-emitting) nanoparticles with the well-known aspects of glass, such as transparency and the ability to be processed into various shapes including very fine optical fibres.

The research, in collaboration with Macquarie University and University of Melbourne, has been published online in the journal Advanced Optical Materials.

 “These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays,” says lead author Dr Tim Zhao, from the University of Adelaide’s School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS).

Although this method was developed with upconversion nanoparticles, the researchers believe their new ‘direct-doping’ approach can be generalised to other nanoparticles with interesting photonic, electronic and magnetic properties. There will be many applications – depending on the properties of the nanoparticle.

“If we infuse glass with a nanoparticle that is sensitive to radiation and then draw that hybrid glass into a fibre, we could have a remote sensor suitable for nuclear facilities,” says Dr Zhao.

 To date, the method used to integrate upconversion nanoparticles into glass has relied on the in-situ growth of the nanoparticles within the glass.

“We’ve seen remarkable progress in this area but the control over the nanoparticles and the glass compositions has been limited, restricting the development of many proposed applications,” says project leader Professor Heike Ebendorff-Heideprem, Deputy Director of IPAS and Senior Investigator of the ARC Centre of Excellence for Nanoscale BioPhotonics.

“With our new direct doping method, which involves synthesizing the nanoparticles and glass separately and then combining them using the right conditions, we’ve been able to keep the nanoparticles intact and well dispersed throughout the glass. The nanoparticles remain functional and the glass transparency is still very close to its original quality. We are heading towards a whole new world of hybrid glass and devices for light-based technologies.”

_MNT0322

Dr Tim Zhao

Heike Ebendorff-Heidepriem

Prof Heike Ebendorff-Heidepriem

 

Article written by Robyn Mills, The University of Adelaide