Blog Archives

IPAS revolutionary research featured in Optics Express

 IPAS researchers led by Dr Stephen Warren-Smith and Prof Heike Ebendorff-Heidepriem have fabricated an imaging optical fibre using a new technique of extruding glass through metal 3D printed dies. This opens opportunities for ultra-small, high-resolution imaging with potential for imaging and sensing inside previously inaccessible regions of the body.

Soft-glass imaging microstructured optical fibers
Stephen C. Warren-Smith, Alastair Dowler, and Heike Ebendorff-Heidepriem
Optics Express, Vol. 26, Issue 26,pp. 33604-33612 (2018)
DOI: 10.1364/OE.26.033604

Advertisements

GLASS CAN BE BOTH SCIENCE AND ART featured in ATSE’s focus magazine

Congratulations Prof Heike Ebendorff-Heidepriem on being selected to be included in this month’s addition of the Australian Academy of Technological Sciences and Engineering (ATSE)’s Focus magazine.

This edition of ATSE Focus contains a selection of profiles of recipients of the first round of Global Connections Fund Priming Grants, which demonstrate the diversity of projects and partnerships being supported by the program.Heike _ glass & art

Prof Ebendorff-Heidepriem was successfully awarded a 2017 Global Connections Fund – Bridging Grant , in collaboration with international partner IRflex, with the project entitled “Extruded Hollow-Core Fibre for High-Power Mid-IR Laser”.

For the online article, please click here.

 

Glass now has smart potential

Australian researchers at the University of Adelaide have developed a method for embedding light-emitting nanoparticles into glass without losing any of their unique properties – a major step towards ‘smart glass’ applications such as 3D display screens or remote radiation sensors.

This new “hybrid glass” successfully combines the properties of these special luminescent (or light-emitting) nanoparticles with the well-known aspects of glass, such as transparency and the ability to be processed into various shapes including very fine optical fibres.

The research, in collaboration with Macquarie University and University of Melbourne, has been published online in the journal Advanced Optical Materials.

 “These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays,” says lead author Dr Tim Zhao, from the University of Adelaide’s School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS).

Although this method was developed with upconversion nanoparticles, the researchers believe their new ‘direct-doping’ approach can be generalised to other nanoparticles with interesting photonic, electronic and magnetic properties. There will be many applications – depending on the properties of the nanoparticle.

“If we infuse glass with a nanoparticle that is sensitive to radiation and then draw that hybrid glass into a fibre, we could have a remote sensor suitable for nuclear facilities,” says Dr Zhao.

 To date, the method used to integrate upconversion nanoparticles into glass has relied on the in-situ growth of the nanoparticles within the glass.

“We’ve seen remarkable progress in this area but the control over the nanoparticles and the glass compositions has been limited, restricting the development of many proposed applications,” says project leader Professor Heike Ebendorff-Heideprem, Deputy Director of IPAS and Senior Investigator of the ARC Centre of Excellence for Nanoscale BioPhotonics.

“With our new direct doping method, which involves synthesizing the nanoparticles and glass separately and then combining them using the right conditions, we’ve been able to keep the nanoparticles intact and well dispersed throughout the glass. The nanoparticles remain functional and the glass transparency is still very close to its original quality. We are heading towards a whole new world of hybrid glass and devices for light-based technologies.”

_MNT0322

Dr Tim Zhao

Heike Ebendorff-Heidepriem

Prof Heike Ebendorff-Heidepriem

 

Article written by Robyn Mills, The University of Adelaide