Category Archives: news

National Measurement Institute and World Metrology Day Honour for Andre Luiten

prof-andre-luiten-ctdToday’s World Metrology Day and to celebrate, the National Measurement Institute (NMI) announced Professor Andre Luiten as the recipient of the Barry Inglis Medal.

The award is in recognition of Andre and team’s pioneering research into the development of techniques for extremely precise and accurate measurement of time. Specifically, the Cryogenic Sapphire Clock is a ultra precise oscillator that can measure time at the femtosecond scale (one quadrillionth of a second) and a single second deviation occurs one every 40 million years. This kind of precision is essential for technologies such as metrology and radar.

More information can be found in Media Releases from Hon Craig Laundy (Assistant Minister for Industry, Innovation and Science) and the University of Adelaide.

Cryo clock landscape

Dr Wenle Weng: Marie Curie Fellowship

wenle-weng

Dr Wenle Weng is the recent recipient of a Marie Sklodowska-Curie Action Fellowship (MSCA) and will be spending 24 months in Lausanne, Switzerland.

Weng’s project is titled “Synthesis of low noise microwaves using solitons locked to an ultra-stable cavity” and he will be conducting his research at the École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland. Set on the banks of Lake Geneva, EPFL specialises in physical sciences and was ranked 14th in the world across all fields in QS World University Rankings (2015/2016).

The MSCA Fellowship is awarded to the best and most promising researchers from anywhere in the world. The fellowship funds travel, living costs and employment in an European Union country to facilitate career development, such as research-related and transferable skills, research impact, enhanced cooperation and network building.

 

 

Uni of Adelaide to Partner Mitsubishi for Sensing Solutions

The University of Adelaide will develop novel very high temperature sensors for global industrial giant Mitsubishi Heavy Industries, the University announced today.

Mitsubishi Heavy Industries and the University have signed contracts for collaborative research by the University’s Institute for Photonics and Advanced Sensing (IPAS) to develop unique optical fibre based ultra-high, multipoint temperature sensors that will enhance the efficiency of their power generation systems.

IPAS and the University’s School of Physical Sciences are renowned for the development of light-based technologies, including optical fibre sensors, for a range of biomedical, defence, environmental and industrial sensing.

“Mitsubishi came to Adelaide looking for global research partners and decided our ultra-high temperature optical fibre sensors would provide a unique opportunity to better understand and improve their world leading power generation systems,” says Professor Mike Brooks, Acting Vice-Chancellor and President at the University of Adelaide.

“The University of Adelaide is honoured to be working with such a giant of industrial engineering and manufacturing as Mitsubishi Heavy Industries.”

Last year IPAS worked with 68 different local and international companies to develop novel breakthrough technologies to help them improve manufacturing and business processes.

“Application of IPAS technologies to date has been largely focused on local South Australian companies – helping them grow their business and retain jobs,” says Professor Andre Luiten, Director of IPAS.

“This new collaboration represents international recognition for the quality of the research and development we are doing, and the difference these emerging disruptive technologies like photonics can make to businesses’ bottom lines.”

“This new collaboration surely brings new technology to sensing of the hot parts of the product of MHI. This will lead to improvements in our product power, and a new business opportunity,” says Dr Fukagawa, the general manager of the heat transfer research department, from Mitsubishi Heavy Industries.

The Mitsubishi contract will build on the technology that IPAS developed with SJ Cheesman for deployment at the Nyrstar Polymetalic Smelter at Port Pirie. This provided novel temperature sensors that can withstand furnace temperatures, enabling processes within the environment of the smelter to be monitored for the first time enabling increased efficiency and significant reductions in energy use

“Cool” Front Cover Feature for the Sapphire Clock

Cryo clock

The Sapphire Clock is featured on the front cover of this month’s “Cold Facts”, the official publication of the Cryogenic Society of America

The Sapphire Clock is a cryogenic sapphire oscillator that allows time to be measured to the femtosecond scale (one quadrillionth of a second), the kind of accuracy required for ultra high precision measurements; such as radar technology, long baseline astronomy and quantum computing.

Building off technology developed by Prof Andre Luiten in 1996 and Prof John Hartnett in 2004-2012, the most recent version of the Sapphire Clock is capable of 100 time better spectral purity than other sapphire clock articlecommercially available technologies.

The Sapphire Clock team is led by A/Prof Martin O’Connor and a commercial version will be available in late 2017.

Ref: O’Connor et al (2017) Cold Facts, Vol 33 (1): 16-17.

New optical fibre sensor to aid breast cancer surgery

An IPAS research team led by Dr Erik Schartner has developed an optical fibre probe that distinguishes breast cancer tissue from normal tissue – potentially allowing surgeons to be much more precise when removing breast cancer.

The device could help prevent follow-up surgery, currently needed for 15-20% of breast cancer surgery patients where all the cancer is not removed.

Published today in the journal Cancer Research, the researchers in the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), the Institute for Photonics and Advanced Sensing, and the Schools of Physical Sciences and Medicine, describe how the optical probe works by detecting the difference in pH between the two types of tissue. The research conducted with our partners Prof. Grantley Gill at with the Breast, Endocrine and Surgical Oncology Unit at the Royal Adelaide Hospital, Dr Deepak Dhatrak of SA Pathology and Prof David Callen, Director of the Centre for Personalised Cancer Medicine at the University of Adelaide. 

dr-erik-schartner

“We have designed and tested a fibre-tip pH probe that has very high sensitivity for differentiating between healthy and cancerous tissue with an extremely simple – so far experimental – setup that is fully portable,” says project leader Dr Erik Schartner, postdoctoral researcher at the CNBP at the University of Adelaide.

“Because it is cost-effective to do measurements in this manner compared to many other medical technologies, we see a clear scope for this technology in operating theaters.”

Current surgical techniques to remove cancer lack a reliable method to identify the tissue type during surgery, relying on the experience and judgement of the surgeon to decide on how much tissue to remove. Because of this, surgeons often perform ‘cavity shaving’, which can result in the removal of excessive healthy tissue. And at other times, some cancerous tissue will be left behind.

“This is quite traumatic to the patient, and has been shown to have long-term detrimental effects on the patient’s outcome,” Dr Schartner says.

The optical fibre probe uses the principle that cancer tissue has a more acidic environment than normal cells; they produce more lactic acid as a byproduct of their aggressive growth.

The pH indicator embedded in the tip of the optical probe emits a different colour of light depending on the acidity. A miniature spectrometer on the other end of the probe analyses the light and therefore the pH.

“How we see it working is the surgeon using the probe to test questionable tissue during surgery,” says Dr Schartner. “If the readout shows the tissues are cancerous, that can immediately be removed. Presently this normally falls to post-operative pathology, which could mean further surgery.

The researchers currently have a portable demonstration unit and are doing further testing. They hope to progress to clinical studies in the near future.

$14.7 million in grants to further drive innovative defence technologies

Minister for Defence Industry, The Hon Christopher Pyne MP today announced seven Australian organisations would receive Australian Government funding of $14.7 million to develop and demonstrate innovative technologies to enhance Defence capability, as part of the Government’s $1.6 billion investment in defence innovation.

https://www.pyneonline.com.au/media-centre/media-releases/147-million-in-grants-to-further-drive-innovative-defence-technologies

IPAS researchers Prof Andre Luiten, A/Prof John Hartnett and A/Prof Martin O’Connor are the research leaders of one of these projects. Their project is to develop Ultra-High Quality Signal Generation for Over the Horizon Radar. The project aims to upgrade the overall performance of the Jindalee Operational Radar Network (JORN), through a performance upgrade of its essential sub-systems. This will improve overall detection of targets.

prof-andre-luiten-ctd

$4.5 million awarded for new research discoveries

IPAS researchers have today been awarded $4.5 million in federal funding for new research.

This included 4 Discovery Projects, 1 DECRA Fellowship, 1 Future Fellowship and 2 LIEF infrastructure grants led by IPAS members. 

IPAS Partnership with Trajan Video

Artificial intelligence replaces physicists

Prof Andre LuitenPhysicists are putting themselves out of a job, using artificial intelligence to run a complex experiment.

The experiment, developed by physicists from ANU, University of Adelaide and UNSW ADFA, created an extremely cold gas trapped in a laser beam, known as a Bose-Einstein condensate, replicating the experiment that won the 2001 Nobel Prize. Part of this research team was IPAS Director Professor Andre Luiten and Professor Anton van den Hengel, School of Computer Sciences at University of Adelaide.

“I didn’t expect the machine could learn to do the experiment itself, from scratch, in under an hour,” said co-lead researcher Paul Wigley from ANU Research School of Physics and Engineering.

“A simple computer program would have taken longer than the age of the universe to run through all the combinations and work this out.”

Bose-Einstein condensates are some of the coldest places in the Universe, far colder than outer space, typically less than a billionth of a degree above absolute zero.

They could be used for mineral exploration or navigation systems as they are extremely sensitive to external disturbances, which allows them to make very precise measurements such as tiny changes in the Earth’s magnetic field or gravity.

The artificial intelligence system’s ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA.

“You could make a working device to measure gravity that you could take in the back of a car, and the artificial intelligence would recalibrate and fix itself no matter what,” he said.

“It’s cheaper than taking a physicist everywhere with you.”

The team cooled the gas to around 1 microkelvin, and then handed control of the three laser beams over to the artificial intelligence to cool the trapped gas down to nanokelvin.

Researchers were surprised by the methods the system came up with to ramp down the power of the lasers.

“It did things a person wouldn’t guess, such as changing one laser’s power up and down, and compensating with another,” said Mr Wigley.

“It may be able to come up with complicated ways humans haven’t thought of to get experiments colder and make measurements more precise.

The new technique will lead to bigger and better experiments, said Dr Hush.

“Next we plan to employ the artificial intelligence to build an even larger Bose-Einstein condensate faster than we’ve seen ever before,” he said.

The research is published in the Nature group journal Scientific Reports.

Article written by the Australian National University media team.

Minister Maher’s remarks on IPAS in the Legislative Council

On 22 March, Minister Maher spoke about IPAS in the Legislative Council.  His full comments are below, but a few highlights include:

  • IPAS was a standout research institute, engaging in cutting-edge research and development with game-changing potential across many areas of industry and technology
  • the State Government was proud to have partnered with IPAS to deliver the Photonics Catalyst Program.  As a result of this program, Trajan had been working with IPAS to fabricate novel ion transfer tubes for mass spectronomy that were then used to undertake chemical analysis in the medical industry.  Trajan had established a new office within the IPAS facility at Adelaide University and were  investigating the possibility of undertaking larger scale manufacturing in South Australia
  • Minister Maher also spoke about the IPAS event he attended last week at the University, which he described as a great opportunity for SA companies to hear from several leading speakers about the transformative potential of photonics
  • The Government was committed to maximising the photonics opportunity for the state.  It had recently provided $200,000 to the University of Adelaide to undertake a photonics value chain analysis to determine the feasibility of further establishing South Australia as a world recognised location of photonics excellence. Through this financial contribution, IPAS had appointed the international photonics expert Dr Bob Lieberman to deliver the photonics value chain analysis.
Hon Kyam Maher speaking at the IPAS Industry Networking Event

Hon Kyam Maher speaking at the IPAS Industry Networking Event


 

Full details on Minister Maher’s comments below:

Legislative Council

Photonics

The Hon. G.A. KANDELAARS ( 14:43 ): My question is to the Minister for Manufacturing and Innovation. Can the minister inform the chamber about opportunities in photonics and advanced sensing that may deliver for South Australia?

The Hon. K.J. MAHER (Minister for Employment, Minister for Aboriginal Affairs and Reconciliation, Minister for Manufacturing and Innovation, Minister for Automotive Transformation, Minister for Science and Information Economy) ( 14:43 ): I thank the honourable member for his question and his interest in this area and in areas that are providing future industries and future prospects for South Australia. Last week, I had the opportunity to attend the Institute for Photonics and Advanced Sensing at Adelaide University (IPAS), which I have been to a number of times over the last 12 months or so. While there are a number of distinguished research institutions in South Australia, IPAS is a standout, engaging in cutting-edge research and development with game-changing potential across many areas of industry and technology.

The state government is proud to have partnered with IPAS to deliver the Photonics Catalyst Program, which is connecting South Australian manufacturers with emerging laser and sensor technologies being developed by the institute. The seeds we are sowing with programs such as the Photonics Catalyst Program are creating a positive impact for South Australian companies and companies such as Austofix and Trajan.

Trajan has been working with the Institute for Photonics and Advanced Sensing to fabricate novel ion transfer tubes for mass spectronomy that are then used to undertake chemical analysis in the medical industry. The company, Trajan, has committed to entering into a strategic alliance with IPAS that will initially result in the establishment of a new office within the IPAS facility at Adelaide University. I understand that they are also investigating the possibility of undertaking larger scale manufacturing in South Australia which may include the transfer of some of the manufacturing that Trajan do elsewhere around the world.

The IPAS event last week was a great opportunity for representatives from South Australian companies to hear from several leading speakers about the transformative potential of photonics, sensoring and this sort of measurement. Case studies were presented by Anne Collins from Trajan Scientific and Medical; Chris Henry from Austofix, whose company is engaged in the advanced manufacturing of orthopaedic implants; Dr Gordon Frazer from DSTG, which is involved in the development of things such as the over-the-horizon radar system.

The variety of the companies represented at this event signified the breadth of current applications of these technologies for industry, but equally there are applications that are yet to be fully explored. At this event I also had the opportunity to speak with international photonics expert Dr Bob Lieberman, who is President of the International Society for Optics and Photonics. Photonics is a disruptive technology with the potential to be a game-changer for many companies, including South Australian companies, to solve problems for local, interstate and global customers.

Photonics devices, such as lasers, sensors and optical fibres, are applicable to a number of important local industries, including resources, medical, defence, food and environmental industries. We know that the photonics global market is estimated to be worth around $540 billion and is expected to grow to $950 billion by 2023, so this industry represents a great opportunity for our local research and local advanced manufacturing.

That is why the South Australian government is committed to maximising the opportunity for this state. The government recently provided $200,000 to the University of Adelaide to undertake a photonics value chain analysis to determine the feasibility of further establishing South Australia as a world recognised location of photonics excellence.

Through this financial contribution, the Institute for Photonics and Advanced Sensing at Adelaide University has appointed the international photonics expert Dr Bob Lieberman to deliver the photonics value chain analysis. Very simply put, Dr Lieberman’s work will help the state to develop a road map for light-based technologies in a partnership with the University of Adelaide’s Institute for Photonics and Advanced Sensing.

This project will deliver a comprehensive analysis of South Australia’s existing photonics capabilities within research and industry; an understanding of current and future global market opportunities that utilise photonics technologies and areas where these can be matched to existing capabilities; the necessary actions and projects for industry, research and government to build a photonics industry in South Australia; and research alignment to industry needs and specific projects to take commercial ready or near commercial ready technology to the market.

The road map will provide an important analysis of current and future local, national and international market opportunities relating to photonics. South Australia has globally recognised research expertise in photonics at the University of Adelaide, the University of South Australia, Flinders University and at the Defence Science and Technology Group. We must capitalise on these significant opportunities in this emerging market and the benefits that might present themselves for the South Australian economy.

It is expected that this work will provide the foundations for the Institute for Photonics and Advanced Sensing proposed Photonics SA cluster. I look forward to informing the house in the future on the outcomes of Dr Lieberman’s analysis and the very real opportunities this technology offers for industry in South Australia.