Category Archives: Media

Media Release: Designing Better Drugs to Treat Type 2 Diabetes

John Bruning

Research led by the University of Adelaide is paving the way for safer and more effective drugs to treat type 2 diabetes, reducing side effects and the need for insulin injections.

Two studies, published in the Journal of Medicinal Chemistry and BBA-General Subjects, have shown for the first time how new potential anti-diabetic drugs interact with their target in the body at the molecular level.

These new potential drugs have a completely different action than the most commonly prescribed anti-diabetic, Metformin, which acts on the liver to reduce glucose production, and are potentially more efficient at reducing blood sugar. They target a protein receptor known as PPARgamma found in fat tissue throughout the body, either fully or partially activating it in order to lower blood sugar by increasing sensitivity to insulin and changing the metabolism of fat and sugar.

“Type two diabetes is characterised by resistance to insulin with subsequent high blood sugar which leads to serious disease. It is usually associated with poor lifestyle factors such as diet and lack of exercise,” says lead researcher Dr John Bruning, with the University’s School of Biological Sciences and Institute for Photonics and Advanced Sensing.

“Prevalence of type 2 diabetes in Australia alone has more than tripled since 1990, with an estimated cost of $6 billion a year. The development of safe and more efficient therapeutics is therefore becoming increasingly important.

“People with severe diabetes need to take insulin but having to inject this can be problematic, and it’s difficult to get insulin levels just right. It’s highly desirable for people to come off insulin injections and instead use oral therapeutics.”

The first study, in collaboration with The Scripps Research Institute in Florida, US, describes an honours research project by Rebecca Frkic, where 14 different versions of a drug which partially activates PPARgamma were produced. Partial activation can have the benefit of fewer side-effects than full activation.

The original drug, INT131, is currently being tested in clinical trials in the US but some of the versions produced at the University of Adelaide have increased potency compared to the original, with the potential to further improve the treatment of type 2 diabetes.

“A major finding of this study was being able to show which regions of the drug are most important for interacting with the PPARgamma receptor,” says Dr Bruning. “This means we now have the information to design modified drugs which will work even more efficiently.”

The second study, in collaboration with Flinders University, used X-ray crystallography to demonstrate for the first time exactly how a potential new drug, rivoglitazone, binds with the PPARgamma receptor. Rivoglitazone fully activates PPARgamma but has less side effects than others with this mode of action.

“Showing how this compound interacts with its target is a key step towards being able to design new therapeutics with higher efficiencies and less side-effects,” says lead author Dr Rajapaksha, from Flinders University School of Medicine (now at La Trobe University). “Lack of structural information was hampering determination of the precise mechanisms involved.”

Press Release link.

Reference: Frkic et al (2017) “Structure-Activity Relationship of 2,4-dichloro-N-(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) Analogs for PPARγ-Targeted Antidiabetics” Journal of Medicinal Chemistry, doi: 10.1021/acs.jmedchem.6b01727.

Rajapaksha et al (2017) “X-ray Crystal Structure of Rivoglitazone bound to PPARγ and PPAR Subtype Selectivity of TZDs” Biochimica et Biophysica Acta (BBA) – General Subjects, doi:10.1016/j.bbagen.2017.05.008.

Uni of Adelaide to Partner Mitsubishi for Sensing Solutions

The University of Adelaide will develop novel very high temperature sensors for global industrial giant Mitsubishi Heavy Industries, the University announced today.

Mitsubishi Heavy Industries and the University have signed contracts for collaborative research by the University’s Institute for Photonics and Advanced Sensing (IPAS) to develop unique optical fibre based ultra-high, multipoint temperature sensors that will enhance the efficiency of their power generation systems.

IPAS and the University’s School of Physical Sciences are renowned for the development of light-based technologies, including optical fibre sensors, for a range of biomedical, defence, environmental and industrial sensing.

“Mitsubishi came to Adelaide looking for global research partners and decided our ultra-high temperature optical fibre sensors would provide a unique opportunity to better understand and improve their world leading power generation systems,” says Professor Mike Brooks, Acting Vice-Chancellor and President at the University of Adelaide.

“The University of Adelaide is honoured to be working with such a giant of industrial engineering and manufacturing as Mitsubishi Heavy Industries.”

Last year IPAS worked with 68 different local and international companies to develop novel breakthrough technologies to help them improve manufacturing and business processes.

“Application of IPAS technologies to date has been largely focused on local South Australian companies – helping them grow their business and retain jobs,” says Professor Andre Luiten, Director of IPAS.

“This new collaboration represents international recognition for the quality of the research and development we are doing, and the difference these emerging disruptive technologies like photonics can make to businesses’ bottom lines.”

“This new collaboration surely brings new technology to sensing of the hot parts of the product of MHI. This will lead to improvements in our product power, and a new business opportunity,” says Dr Fukagawa, the general manager of the heat transfer research department, from Mitsubishi Heavy Industries.

The Mitsubishi contract will build on the technology that IPAS developed with SJ Cheesman for deployment at the Nyrstar Polymetalic Smelter at Port Pirie. This provided novel temperature sensors that can withstand furnace temperatures, enabling processes within the environment of the smelter to be monitored for the first time enabling increased efficiency and significant reductions in energy use

“Cool” Front Cover Feature for the Sapphire Clock

Cryo clock

The Sapphire Clock is featured on the front cover of this month’s “Cold Facts”, the official publication of the Cryogenic Society of America

The Sapphire Clock is a cryogenic sapphire oscillator that allows time to be measured to the femtosecond scale (one quadrillionth of a second), the kind of accuracy required for ultra high precision measurements; such as radar technology, long baseline astronomy and quantum computing.

Building off technology developed by Prof Andre Luiten in 1996 and Prof John Hartnett in 2004-2012, the most recent version of the Sapphire Clock is capable of 100 time better spectral purity than other sapphire clock articlecommercially available technologies.

The Sapphire Clock team is led by A/Prof Martin O’Connor and a commercial version will be available in late 2017.

Ref: O’Connor et al (2017) Cold Facts, Vol 33 (1): 16-17.

New optical fibre sensor to aid breast cancer surgery

An IPAS research team led by Dr Erik Schartner has developed an optical fibre probe that distinguishes breast cancer tissue from normal tissue – potentially allowing surgeons to be much more precise when removing breast cancer.

The device could help prevent follow-up surgery, currently needed for 15-20% of breast cancer surgery patients where all the cancer is not removed.

Published today in the journal Cancer Research, the researchers in the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), the Institute for Photonics and Advanced Sensing, and the Schools of Physical Sciences and Medicine, describe how the optical probe works by detecting the difference in pH between the two types of tissue. The research conducted with our partners Prof. Grantley Gill at with the Breast, Endocrine and Surgical Oncology Unit at the Royal Adelaide Hospital, Dr Deepak Dhatrak of SA Pathology and Prof David Callen, Director of the Centre for Personalised Cancer Medicine at the University of Adelaide. 

dr-erik-schartner

“We have designed and tested a fibre-tip pH probe that has very high sensitivity for differentiating between healthy and cancerous tissue with an extremely simple – so far experimental – setup that is fully portable,” says project leader Dr Erik Schartner, postdoctoral researcher at the CNBP at the University of Adelaide.

“Because it is cost-effective to do measurements in this manner compared to many other medical technologies, we see a clear scope for this technology in operating theaters.”

Current surgical techniques to remove cancer lack a reliable method to identify the tissue type during surgery, relying on the experience and judgement of the surgeon to decide on how much tissue to remove. Because of this, surgeons often perform ‘cavity shaving’, which can result in the removal of excessive healthy tissue. And at other times, some cancerous tissue will be left behind.

“This is quite traumatic to the patient, and has been shown to have long-term detrimental effects on the patient’s outcome,” Dr Schartner says.

The optical fibre probe uses the principle that cancer tissue has a more acidic environment than normal cells; they produce more lactic acid as a byproduct of their aggressive growth.

The pH indicator embedded in the tip of the optical probe emits a different colour of light depending on the acidity. A miniature spectrometer on the other end of the probe analyses the light and therefore the pH.

“How we see it working is the surgeon using the probe to test questionable tissue during surgery,” says Dr Schartner. “If the readout shows the tissues are cancerous, that can immediately be removed. Presently this normally falls to post-operative pathology, which could mean further surgery.

The researchers currently have a portable demonstration unit and are doing further testing. They hope to progress to clinical studies in the near future.

$4.5 million awarded for new research discoveries

IPAS researchers have today been awarded $4.5 million in federal funding for new research.

This included 4 Discovery Projects, 1 DECRA Fellowship, 1 Future Fellowship and 2 LIEF infrastructure grants led by IPAS members. 

ON Prime: For Big Ideas Ready to Break out – three successful IPAS applications

Congratulations to IPAS researchers for gaining a spot in CSIRO ON Prime. This pre-accelerator program helps research teams validate their research and discover a real world application for it.

ON embraces a get-out-of–the-building approach to learning, by encouraging hands-on, practical learning and business model development.

The High Temperature Sensor, Sapphire Clock and Making better babies with light teams were successful in their applications and the research teams will head to Melbourne over the coming months to participate in the program.

We also wish to congratulate the Robinson Institute for their successful application Home Fertility Assessment.

 

ON Logo CSIRO Logo

Additional funding for vital research

OLYMPUS DIGITAL CAMERA

The Turnbull Government has announced an additional $16 million for 10 critical research projects that will generate meaningful social and economic benefits for all Australians in areas including urban infrastructure, bioscience, telecommunications and health.

Minister for Education and Training Simon Birmingham said the investment from the National Collaborative Research Infrastructure Strategy (NCRIS) Agility Fund would help unlock Australia’s potential as an innovation nation by “backing work that offers real and tangible benefits for Australians from all walks of life”.

“Homes, hospitals, farms and fishing trawlers are just some of the places set to see benefits from the research these new facilities will deliver,” Minister Birmingham said.

“From areas as diverse as microscopy and marine science to ion acceleration and veterinary science, the Coalition’s $16 million additional investment in 10 research projects highlights our commitment to ensuring Australia has the support it needs for research and innovation.

“Our commitments stand in stark contrast to Labor which in government announced $6.6 billion worth of cuts from higher education and research and left major research infrastructure without funding, like NCRIS, which jeopardised the jobs of 1,700 highly skilled critical researchers.”

The additional $16 million funding comes on top of the $150 million of indexed investment for ongoing operations that we committed through the National Innovation and Science Agenda.

Minister Birmingham said that the Coalition had taken an holistic approach to research by encouraging collaboration with industry and business to focus on being more responsive to the needs and priorities of our society and economy.

“Australia needs a coordinated and focused approach to research priorities that are targeted at those things that make a difference to Australia and generate meaningful social and economic benefits,” Minister Birmingham said.

“That’s why our National Innovation and Science Agenda outlined sharper incentives in research funding that reward research excellence and partnership with industry.

“In May we committed $163 million to 258 new research projects that have been selected based on how they map to the challenges Australia faces.”

Minister Birmingham was joined at the announcement by the country’s Chief Scientist Dr Alan Finkel AO who was in Adelaide as part of a nationwide consultation trip to develop the priorities for Australian research.

“The work Dr Finkel and his Expert Working Group of researchers, stakeholders and business leaders are doing is critically important to develop a new roadmap for NCRIS and direction for research and innovation for the next decade,” Minister Birmingham said.

“The Expert Working Group has already made great progress and their work will ensure Australia has clear research priorities so that our universities and institutions can work together to tackle the challenges we face across the country.”

Article from Senator Hon Simon Birmingham, Liberal Senator for South Australia and Minister for Education and Training

IMG_6375  IMG_6356  IMG_6360  IMG_6378   OLYMPUS DIGITAL CAMERA

Dr Stephen Warren-Smith wins prestigious Ramsay Fellowship

Congratulations to Dr Stephen Warren-Smith who has won a prestigious Ramsay Fellowship. These fellowships are to support outstanding researchers to conduct full time independent research within the Faculty of Sciences at the University of Adelaide.

Stephen completed his PhD in 2011 at The University of Adelaide. Following this, Stephen was a recipient of an ARC Super Science Fellowship to work on fertility biomarker sensing. In 2015 Stephen became a Marie Curie International Fellow at the Leibniz Institute of Photonic Technology (IPHT) in Jena, Germany, to investigate new designs of optical fibre biosensors.  We welcome Stephen back to IPAS in October 2016.

Dr Stephen-Warren Smith

Dr Stephen-Warren Smith

Glass now has smart potential

Australian researchers at the University of Adelaide have developed a method for embedding light-emitting nanoparticles into glass without losing any of their unique properties – a major step towards ‘smart glass’ applications such as 3D display screens or remote radiation sensors.

This new “hybrid glass” successfully combines the properties of these special luminescent (or light-emitting) nanoparticles with the well-known aspects of glass, such as transparency and the ability to be processed into various shapes including very fine optical fibres.

The research, in collaboration with Macquarie University and University of Melbourne, has been published online in the journal Advanced Optical Materials.

 “These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays,” says lead author Dr Tim Zhao, from the University of Adelaide’s School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS).

Although this method was developed with upconversion nanoparticles, the researchers believe their new ‘direct-doping’ approach can be generalised to other nanoparticles with interesting photonic, electronic and magnetic properties. There will be many applications – depending on the properties of the nanoparticle.

“If we infuse glass with a nanoparticle that is sensitive to radiation and then draw that hybrid glass into a fibre, we could have a remote sensor suitable for nuclear facilities,” says Dr Zhao.

 To date, the method used to integrate upconversion nanoparticles into glass has relied on the in-situ growth of the nanoparticles within the glass.

“We’ve seen remarkable progress in this area but the control over the nanoparticles and the glass compositions has been limited, restricting the development of many proposed applications,” says project leader Professor Heike Ebendorff-Heideprem, Deputy Director of IPAS and Senior Investigator of the ARC Centre of Excellence for Nanoscale BioPhotonics.

“With our new direct doping method, which involves synthesizing the nanoparticles and glass separately and then combining them using the right conditions, we’ve been able to keep the nanoparticles intact and well dispersed throughout the glass. The nanoparticles remain functional and the glass transparency is still very close to its original quality. We are heading towards a whole new world of hybrid glass and devices for light-based technologies.”

_MNT0322

Dr Tim Zhao

Heike Ebendorff-Heidepriem

Prof Heike Ebendorff-Heidepriem

 

Article written by Robyn Mills, The University of Adelaide

Collaborative project with Flinders University “blow in a bag” breath test for cancer

Prof Andre LuitenFlinders University Researcher Dr Roger Yazbek, who is collaborating on an ARC Linkage grant with Prof Andre Luiten on cancer detection, has recently had the following article published in The Advertiser on their research “blow in the bag” breath test for cancer.

They hope the relatively cheap, non-invasive and rapid tests will eventually be similar to breast screening tests, giving an early warning for people who return a positive result to seek further testing.

Flinders University researcher Dr Roger Yazbek is leading the innovative project at the Flinders School of Medicine Breath Analysis Research Laboratory.

He noted that many people think expelled breath is simply carbon dioxide but he said it could carry clues to a range of cancers.

“With more than 2000 compounds in a single human breath, there is plenty of information there about the state of our health,” he said.

“We are developing a comprehensive breath analysis program which covers a range of things including cancers and the results so far are very promising.

“We are still at the laboratory research stage but in the near future hope to extend to clinical trials.

“We have started collecting breath samples from a range of patients to identify a range of biomarkers for cancer — once we have this data, we will conduct validation trials to roll out some of the first tests, perhaps in less than five years.”

The project is initially focusing on gastrointestinal conditions such as stomach cancer and oesophageal cancer. About 1300 and 2000 Australians are diagnosed with these cancers respectively each year.

Dr Yazbek noted the symptoms of oesophageal cancer manifested late, and an early warning test would save lives.

The breath tests use both passive and active tests. The passive tests measures the various compounds a person exhales, looking for clues to health problems.

The active tests involves giving a person a liquid that interacts with an enzyme unique to a cancer, then checking to see if the exhaled breath carries the telltale resulting biomarker.

The research team intend to expand the project to develop a test for inflammatory bowel disease.

They also are collaborating with University of Adelaide and Women’s and Children’s

Hospital to develop novel breath analysis tools to manage other serious conditions, including cystic fibrosis, neurodegenerative diseases and general gut disorders.

Dr Yazbek emphasised that the new technique would not replace existing tests.

“For oesophageal cancer, you would target those most at risk due to age and lifestyle, much like breast screening, and if there was a positive result you would refer them for further traditional tests,” he said.

“A rapid, simple and non-invasive tool would help to guide better clinical management, avoiding repeated and costly invasive tissue testing which also significantly impacts patients’ quality of life.”

A proof-of-concept paper, In Vitro Development and Validation of a Non-Invasive 13C-Stable Isotope Assay for Ornithine Decarboxylase (ODC), was recently published in the Journal of Breath Research, describing how ODC in human breath can be used as a potential prognostic marker for oesophageal cancer.

Article written by The Advertiser