Category Archives: IPASnews

Tackling Cancer at Ground Zero with Designer Molecules

A new molecule designed by University of Adelaide researchers shows great promise for future treatment of many cancers.

The new molecule successfully targets a protein that plays a major role in the growth of most cancers. This protein target is called proliferating cell nuclear antigen (PCNA), otherwise known as the human sliding clamp.

“PCNA is required for DNA replication and is therefore essential for rapidly dividing cancer cells,” says project leader Dr John Bruning, Senior Research Fellow at the University’s Institute for Photonics and Advanced Sensing (IPAS).

“PCNA holds the machinery that copies DNA. The DNA slides through the centre of this donut-shaped protein where it is replicated.

“If we can inhibit the action of this protein, the cells can’t make DNA, so they can’t divide. This is really tackling cancer at ground zero. It’s stopping cell division and therefore tackling cancer at its most fundamental level.

“We also know that PCNA is ‘overexpressed’ – or makes too many copies – in 90% of all cancers. That means it is a potential target for inhibiting the growth of multiple cancers, not just a select few.

“And importantly, this protein seldom mutates which means that it is less likely to develop resistance against a drug inhibitor.”

The research, in collaboration with the University of Wollongong, has been published in Chemistry, A European Journal.

The multi-disciplinary team at IPAS designed a molecule that can interact with PCNA, offering a promising new strategy for the design of a PCNA inhibiting anti‐cancer treatment.

“In this study, we have taken a protein fragment that naturally interacts with PCNA and transformed it using smart chemistry into a drug-like molecule,” says lead author Dr Kate Wegener, Ramsay Postdoctoral Research Fellow in the University of Adelaide’s School of Biological Sciences.

“We’ve changed its chemistry to protect it from degrading like the natural protein, and so that it works better.”

The new molecule shows increased potency over other PCNA inhibitors, and is likely to show less side-effects.

“Because of the special approach we have used in turning a natural protein into a drug-like molecule, it fixes to PCNA more readily and its action is specific to this protein,” says Dr Bruning.

“This is a first. It’s the first in this type of inhibitor and it will pave the way for a new class of drugs inhibiting the proliferation of cancerous cells.”

Source: The University of Adelaide


Scientists Find Evidence of Far-Distant Neutrino Source

An international team of scientists, including from the University of Adelaide and Curtin University, has found the first evidence of a source of high-energy particles called neutrinos: an energetic galaxy about 4 billion light years from Earth.

The observations were made by the IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station, and confirmed by telescopes around the globe and in Earth’s orbit.

The announcement was made at the the National Science Foundation in the US today.

This discovery points to a source of cosmic rays, another type of high-energy particle which has posed an enduring mystery since first detected over 100 years ago.

Neutrinos are uncharged subatomic particles that normally pass by the trillion through our bodies and every part of the Earth every second, but they rarely interact with matter – a fact that makes them difficult to detect.

 neutrino “Neutrinos at these very high energies are formed after cosmic ray particles are accelerated (boosted to very high energy) and interact with other particles,” says Associate Professor Gary Hill, from the University of Adelaide’s School of Physical Sciences and member of the IceCube Collaboration.

“So what we’ve found is not only the first evidence of a neutrino source, but also evidence that this galaxy is a cosmic ray accelerator.”

IceCube researchers announced the first solid evidence for high-energy neutrinos coming from beyond our galaxy in 2013.

“Now we have found the first evidence for a specific source object, a blazar, which is a very high energy type of galaxy,” says Associate Professor Hill. “This blazar, designated TXS 0506+056, is about four billion light years from Earth. It’s a giant elliptical galaxy with a massive spinning black hole at its core and twin jets of light and high-velocity particles, one of which is aligned towards Earth.

“I have been working in this field for almost 30 years and to find an actual neutrino source is an incredibly exciting moment. Now that we’ve identified a real source, we’ll be able to focus in on other objects like this one, to understand more about these extreme events billions of years ago which set these particles racing towards our planet.”

Two papers published today in the journal Science describe the first evidence for this known blazar as a source of high-energy neutrinos.

The IceCube Observatory at the South Pole is equipped with a nearly real-time alert system which is triggered when a very high-energy neutrino collides with an atomic nucleus in the Antarctic ice in or near the IceCube detector.

On September 22 last year, the observatory broadcast the coordinates of a neutrino detection to telescopes around the world, calling for follow-up observations of the event.

Around 20 observatories on Earth and in space responded to IceCube’s alert including NASA’s orbiting Fermi Gamma-ray Space Telescope, the High Energy Stereoscopic System (H.E.S.S.) in Namibia and the Major Atmospheric Gamma Imaging Cherenkov Telescope, or MAGIC, in the Canary Islands—which detected a flare of high-energy gamma rays associated with TXS 0506+056.

Associate Professor James Miller-Jones from the Curtin University node of the International Centre for Radio Astronomy Research was involved in the team following up the event at radio wavelengths with the Karl G. Jansky Very Large Array in New Mexico, USA.

“It’s really exciting for Australian-based astronomers to be involved in uncovering these new insights into the high-energy Universe,” he said.

University of Adelaide’s Associate Professor Gavin Rowell is a member of the H.E.S.S. team. He says: “This result heralds a new era for neutrino astronomy, and opens up the long-anticipated linkages with observations using photons or light, such as gamma-rays and radio waves.”

Dr Sabrina Einecke worked on MAGIC at the Technical University of Dortmund in Germany, and is now at the University of Adelaide. She says: “Seeing gamma-rays with MAGIC at the same time as the neutrino is an important piece of evidence suggesting that these were both made by processes in the blazar jet.”

IceCube is operated by the IceCube Collaboration of 300 physicists and engineers from 48 institutions in 12 countries, and is led by the University of Wisconsin-Madison, with major funding from the US National Science Foundation. The University of Adelaide research was supported by the Australian Research Council.

Top: The IceCube Lab at the South Pole with a distant source emitting neutrinos that are detected below the ice by IceCube sensors,. Credit: IceCube/NSF
Above: Blazar shoots neutrinos and gamma rays to Earth. Credit: IceCube/NASA

The two Science research papers are:
Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A; and
Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

For full media, please click here.

IPAS Optical Microcavities put forward photonic devices

Optical microcavities are a class of photonic crystals (PCs) that confine light to small volumes by resonant recirculation of electromagnetic waves within the PCs’ structure. They are indispensable for a broad range of applications, including long-distance transmission of data, novel laser sources, quantum communications, sensing and biosensing. In this study Abel and team have developed a pioneering approach for the development of optical microcavities with unprecedented light-confining properties based on self-organised nanoporous anodic alumina photonic crystal platforms. The optimal design of the geometric features and architecture of these PCs can significantly enhance resonant recirculation of light, creating new opportunities to develop ultrasensitive optical platforms, highly selective optical filters, and other photonic devices.

Structural Tailoring of Nanoporous Anodic Alumina Optical Microcavities for Enhanced Resonant Recirculation of Light
Cheryl Suwen Law,  Siew Yee Lim,  Andrew D Abell,  Lluis F. Marsal  and  Abel Santos 

For full article, please click here.

IPAS Novel PPARγ Antagonist – the answer for more effective and safer Type II Diabetes treatment

IPAS researchers have been investigating safer drugs against type two diabetes which are effective at increasing insulin sensitivity without causing side effects. The team has successfully used a number of analytical techniques to determine how these new and improved drugs interact with their target in the body. Their work builds on from previous research undertaken by themselves and others around the globe which focusses on a critical aspect on the development of what can often be a debilitating or even life-threatening condition.

PPARγ in Complex with an Antagonist and Inverse Agonist: A Tumble and Trap Mechanism of the Activation Helix
Rebecca L. Frkic, Andrew C. Marshall, Anne-Laure Blayo, Tara L. Pukala, Theodore M. Kamenecka, Patrick R. Griffin, John B. Bruning



IPAS Semiconductor photonic crystals with optical properties featured in ACS Applied Materials & Interfaces

The precise control of light is key for the efficient utilisation of photons in photocatalytic reactions. Semiconductor nanoporous photonic crystal structures with rationally engineered optical properties can speed up photocatalytic reactions up to several orders of magnitude by utilising the slow photon effect. In this study, the Abel Santos team has demonstrated for the first time that photo-active nanoporous anodic alumina photonic crystals can outperform benchmark photocatalytic platform materials by a rational design of their structure. These semiconductor photonic crystals provide superior performances for a plethora of applications, including photodegradation of environmental pollutants, green energy generation, chemical synthesis and CO2 reduction.

Engineering the Slow Photon Effect in Photoactive Nanoporous Anodic Alumina Gradient-Index Filters for Photocatalysis
Siew Yee LimCheryl Suwen LawMarijana MarkovicJason K. KirbyAndrew D. Abell, and Abel Santos
ACS Appl. Mater. Interfaces, Just Accepted Manuscript

DOI: 10.1021/acsami.8b05946

For full article, please click on this link.



Scientists Pump Up Chances for Quantum Computing

University of Adelaide-led research has moved the world one step closer to reliable, high-performance quantum computing.

An international team has developed a ground-breaking single-electron “pump”. The electron pump device developed by the researchers can produce one billion electrons per second and uses quantum mechanics to control them one-by-one. And it’s so precise they have been able to use this device to measure the limitations of current electronics equipment.

This paves the way for future quantum information processing applications, including in defence, cybersecurity and encryption, and big data analysis.

“This research puts us one step closer to the holy grail – reliable, high-performance quantum computing,” says project leader Dr Giuseppe C. Tettamanzi, Senior Research Fellow, at the University of Adelaide’s Institute for Photonics and Advanced Sensing.

Published in the journal Nano Letters, the researchers also report observations of electron behaviour that’s never been seen before – a key finding for those around the world working on quantum computing.

“Quantum computing, or more broadly quantum information processing, will allow us to solve problems that just won’t be possible under classical computing systems,” says Dr Tettamanzi.

“It operates at a scale that’s close to an atom and, at this scale, normal physics goes out the window and quantum mechanics comes into play.

“To indicate its potential computational power, conventional computing works on instructions and data written in a series of 1s and 0s – think about it as a series of on and off switches; in quantum computing every possible value between 0 and 1 is available. We can then increase exponentially the number of calculations that can be done simultaneously.”

This University of Adelaide team, in collaboration with the University of Cambridge, Aalto University in Finland, University of New South Wales, and the University of Latvia, is working in an emerging field called electron quantum optics. This involves controlled preparation, manipulation and measurement of single electrons. Although a considerable amount of work has been devoted world-wide to understand electronic quantum transport, there is much still to be understood and achieved.

“Achieving full control of electrons in these nano-systems will be highly beneficial for realistic implementation of a scalable quantum computer. We, of course, have been controlling electrons for the past 150 years, ever since electricity was discovered. But, at this small scale, the old physics rules can be thrown out,” says Dr Tettamanzi.

“Our final goal is to provide a flow of electrons that’s reliable, continuous and consistent – and in this research, we’ve managed to move a big step towards realistic quantum computing.

“And, maybe equally exciting, along the way we have discovered new quantum effects never observed before, where, at specific frequencies, there is competition between different states for the capture of the same electrons. This observation will help advances in this game-changing field.”

For full media release, please click here.


IPAS Chip Technology for animal welfare biomarkers funded from APRIL & SARDI

Congratulations to Dr Abel Santos and Prof Mark Hutchinson who were awarded a total of $200k in co-funding from the Australasian Pork Research Institute Ltd (APRIL) and the South Australian Research and Development Institute (SARDI).

A key challenge faced by the Australian pork industry is the need to maintain local production of high quality food for a reasonable price and return on production capital invested, without negatively impacting pig welfare, the environment or the health of the consumer.

The aim of this project will be to develop a lab on a chip technology to integrate multiple laboratory assay functions onto a single miniaturised chip system to streamline the assay protocol for animal welfare biomarkers in pig industry.

Photonic Crystal with novel design and structure published in Scientific Reports

Light-matter interaction is a critical functionality for a plethora of applications such as sensing and biosensing, telecommunications, security, imaging, etc. Photonic crystals (PCs) are optical structures that enable the control of light-matter interactions. In this study, Abel Santos and his team demonstrate the realisation of hybrid nanoporous PCs with finely tuned optical properties across the spectral regions. These PCs allow and forbid the pass of light at specific spectral ranges, with accuracy and versatility, using a smart design of their structural features at the nanoscale to fine-tuning light-matter interactions.

Engineering of Hybrid Nanoporous Anodic Alumina Photonic Crystals  by Heterogeneous Pulse Anodization
Siew Yee Lim, Cheryl Suwen Law, Lluís F. Marsal  & Abel Santos1
Scientific Reports (2018) 8:9455  | DOI:10.1038/s41598-018-27775-6

For full article, please click here.

DSTG presentation at IPAS

We are excited to welcoming Dennis Delic and Barnaby Smith from DSTG at IPAS Seminar on Thursday 12 July from 11:10 -12:00 pm.

Title: Advanced Single Photon Detector Arrays for Defence Applications
Time: 11:10-12:00 pm, Thursday 12th July 2018
Venue: The Braggs – Seminar room level 2
Presenters : Dennis Delic and Barnaby Smith – Defence Science and Technology Group

There are many Defence applications which require electro-optical sensor technologies for detection, tracking and discrimination of distant objects. In this talk we will outline Defence Science and Technology (DST) research into the design and development of Single Photon Avalanche Diode (SPAD) arrays, where we have focussed on miniaturizing individual SPAD detectors using commercially available Complementary Metal-Oxide-Semiconductor (CMOS) processes to allow integration with supporting digital integrated circuits.  Apart from the obvious application for collection of low-light imagery, these detectors are particularly useful for time-of-flight 3D imaging applications using LADAR (LAser Detection And Ranging).  We will outline the latest developments in our SPAD arrays and give a few examples of the LADAR applications we are pursuing.

Dennis Delic has worked in the semiconductor industry for more than twenty-five years as a senior Microelectronic Engineer.   For the last 12 years he has worked at the Defence Science and Technology Group (DST Group) as an applied research specialist leading the design, development and application of CMOS based single photon detectors.

Dr Barnaby Smith undertook a PhD in luminescence at Adelaide University before undertaking postdoctoral research at Bristol and Oxford Universities for a number of years.  Since 1990 he has worked for Defence Science and Technology leading groups working primarily on electro-optical technologies

For further information about this seminar, please contact Dr Ben Sparkes.
For more IPAS Seminars schedules, please click on this link.



IPAS laser featured in Physical Review Applied

breathIPAS research group led by Prof Andre Luiten has created a laser that can differentiate gas compounds with high accuracy and precision. This technique not only finds ground breaking applications in environmental monitoring and  industrial contamination but also paves the way for early stage medical diagnostics.

Number-Density Measurements of CO2 in Real Time with an Optical Frequency Comb for High Accuracy and Precision.
Sarah K. Scholten, Christopher Perrella, James D. Anstie, Richard T. White, Waddah Al-Ashwal, Nicolas Bourbeau Hebert, Jerome Genest, and Andre N. Luiten
Phys.Rev.Applied 9, 054043
DOI: 10.1103/PhysRevApplied.9.054043

 For full media release, please click here.